

Contents

e Introduction

e Approach

e Experimental Setup
e Experiment Result

e Conclusion & Future Works

WYH o
S e

Introduction

QOBm@\ ISEL razzi

D
RsTY *

Heuristic-based Automated Program Repair [1]

Patch
Validation

) Fault)

BUGGY LOCALISED
CODE CODE

> Patch

FIXED
CODE

CANDIDATE
PATCH

2008
200

[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University 4

Search Spaces

All ranges considered for generating candidate patches [2]
e Bugfixing operations
e Buglocation
e Ingredients

e Test Suite

[2] Fan Long and Martin Rinard. 2016. “An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems.” In IEEE/ACM 38th International Conference on Software Engineering (2016). 702-713. 5

Search Spaces

Operation Location
e Move e Line
e Delete e Variable
e Update

Ingredient

e Source code from other parts
of the same project

e Source code from external
projects

Search Spaces: Example

Location

int getYear(int days) {
int year = 1980,
while (days[<=]365) {
if (isLeapYear(year)) {
if (days > 366) {

Buggy Code

[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University 7

Search Spaces: Example

Operation

int getDay(int month) {
Location int year = 1980;
- while (month
+ while (month|

int getYear(int days) {

int year = 198/ Ingredient
while (days[<=]365) {

if (isLeapYear(year)) {

if (days > 366) {

Buggy Code

[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University 8

Search Spaces: Example

Location

int getYear(int days) {
int year = 1980,
while (days[<=]365) {

if (isLeapYear(year)) {
if (days > 366) {

\

Buggy Code

int getYear(int days) {
int year = 1980;
- while (days <= 365) {
+ while (days > 365)
if (isLeapYear(year)) {
if (days > 366) {

Fixed Code

[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University

9

Search Spaces Problem

The performance of APR tools is directly related to the search space [2]

e Existing APR techniques still have vast patch search spaces
e Expandingthe search space leads to resource wastage

e Thedensity of correct patches decreases with more candidate patches

10

[2] Fan Long and Martin Rinard. 2016. “An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems.” In IEEE/ACM 38th International Conference on Software Engineering (2016). 702-713.

How can we effectively decrease search space?

11

Search Spaces

Ingredient

e Source code from other parts
of the same project

e Source code from external
projects

12

Two bugs with similar bug-introducing changes (BIC)
will also have similar fixing commits (BFC)

13

Search Space: Example

Before Buggy Code

int getYear(int days) {
int year = 1980;
while (days == 365) {
if (isLeapYear(year)) { /
if (days > 366) { s

int getYear(int days) { /
int year = 1980; /
while (days <= 365){ S
if (isLeapYear(year)) { -l

if (days > 366) {

Buggy Code

while (days > 365) {

while (days >= 365) {

if (days != null) return O;
while (days <365) {

while (days < 365) {

if (days <=0) return O;
while (days < 365) {

while (days == 365) {

while (days != 365) {

while (days != null &&
days < 365) {

while (year <= 365) {

while (days > 0 &&
days < 365) {

[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University 14

Search Space Reduction e vear 580 Before Buggy Code

while (month == 12) {

Before Buggy Code

int getSecond(int month) {

int getYear(int days) { int year = 1980:

int year = 1980; :
. - while (month <= 12) {
while (days == 365) { +while (month > 12){
if (isLeapYear(year)) {
if (days > 366) { Ingredient

int getMonth(int month) {
int year = 1980; Before Buggy Code

while (month == 12) {

int getYear(int days) {
int year = 1980;
while (days <= 365) {
if (isLeapYear(year)) {
if (days > 366) {

int getMonth(int month) {

int year = 1980;

- while (month <= 12) {
Buggy Code +while (month == 12) {

Ingredient

[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University 15

Related work

Boosting Automated Program Repair with Bug-Inducing Commits (Ming et al.,
ICSE-NEIR ‘20) [3]

e Repair bugs by learning from how they were introduced rather than from how other bugs were
fixed

e Fixingingredients needed to fix a bug can be inferred from the commit that introduced the bug

[4] Zhang, Xindong, et al. "Precfix: Large-scale patch recommendation by mining defect-patch pairs." Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in Practice. 2020,1 6

Related work

Precfix (Zhang et al., ICSE-SEIP ‘20) [4]

e Collecting defect-patch pairs from development histories
e Perform clustering and extracts generic reusable patching patterns

e Typical developer behaviors in committing bug fixes

[4] Zhang, Xindong, et al. "Precfix: Large-scale patch recommendation by mining defect-patch pairs." Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in Practice. 2020.1 7

Approach

ISEL (arzi

18

Open Source Projects

Overview :

r __________________ 1 :- A T T
i | BeforeBug : Similarity - —. _l—I

=3 Inducing I Calculation I - o
1 - ug I
I Commit 4 BIC : BIC Fixing I
: . Pool Commit : Selected

+ IndBuucging : Pool " Bug Fi).(ing
| Commit : | I """ :hl Comm|ts
o ______ I . o ______ 1

;Ea:_: BIC Identification BFC Selection v
Automated
Target BUg » Program Repair Tool

19

SPI: Similar Patch Identifier for Automated Program Repair

BIC2| Code
Differencing &£

o I

Identify bug introducing change of provided
bug

Extract bug fixes operations with similar bug
introducing change

Use heuristic-based automated program
repair tool with reduced search space

20

GumTree: Code Differencing Tool (Falleri et al. ASE 2014)

_. Test.java: destination

public class Test {

: private String foo(int 1) {

if (1 == 0) return "Bar";

else if (i == -1) return "Foo!";
< Test ation }
: ’ }
,/. > 9
: § . -
,,’ ’ / Sy

.
2. ’
: .
’ ’
,

7 ’
SimpleNdme: Stying PrimitiveType: int) .
’
7 7
./A II

Test.java: source

public class Test {
public String foo(int i) {
if (i == @) return "Foo!";

SimpleName: | NumberLiteral: 0 StringLiteral:Foo!

[6] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. “Fine-Grained and Accurate Source Code Differencing”. 29th ACM/IEEE International Conference on Automated Software Engineering (2014), 313-324_2 1

GumTree: Closure-14 Example

} else if (parent.getLastChild() == node){
if (cfa != null) {
for (Node finallyNode : cfa.finallvMan aet(parent)) {

cfa.createEdge(fromNode, Branch.ON_EX, finallyNode);
}
}

return computeFollowNode(fromNode, parent, cfa);

Before Bug Inducing Commit

} else if (parent.getLastChild() == node){
if (cfa != null) {
for (Node finallyNode : cfa finallvMan net(parent)) {
cfa.createEdge(fromNode, Branch.UNCOND, finallyNode);
}
}

return computeFollowNode(fromNode, parent, cfa);

After Bug Inducing Commit

—

<Snippet of Closure-14 Bug Introducing Change>

[==

insert-node

Modifier: final [1356,1361]
to

TypeDeclaration [1282,35017]
at 1, ===

insert e

TYPE_DECLARATION KIND: class [1362,1367]
to

TypeDeclaration [1282,35017]

at 2, ===

insert-node

SimpleName: ControlFlowAnalysis [1368,1387]
to

TypeDeclaration [1282,35017]

at 3, ===

update-node

QualifiedName: Branch.ON_EX [26383,26395]
replace Branch.ON_EX by Branch.UNCOND, ===
delete-node

Modifier: final [1356,1361]

delete-node

TYPE_DECLARATION KIND: class [1362,1367]

delete-node

SimpleName: ControlFlowAnalysis [1368,1387]

Numerical Vector of Change Operation

e Convertthe GumTree result into numerical vectors

e Eachnode type and edit operation has specific value to be distincted

ing[] expanded_nodes = {

sert-node

Modifier: final [1356,1361]
to

TypeDeclaration [1282,35017]
at 1, ===

insert-node

TYPE_DECLARATION_KIND: class [1362,1367]
to

TypeDeclaration [1282,35017]

at 2, ===

insert-node

|::> 243,316,338,

SimpleName: ControlFlowAnalysis [1368,1387]
to

TypeDeclaration [1282,35017]

at 3, ===

<Snippet of Closure-14 Bug Introducing Change>

Identify Bug Introducing Change of Target Bug

e Use git blame command

BIC2| Code
Differencing &£

BIC 7 it

J e Define into change operation[5] to seek similar BIC
e Use GumTree[6] to extract edit operation in Abstract
LA N | SAtE &AM H1 8 Syntax Tree
M= o = CS11' oy | 915'! _'6':E

° Convert to numerical vector

[5] Connor, Aidan, Aaron Harris, Nathan Cooper, and Denys Poshyvanyk. “Can we automatically fix bugs by learning edit operations?.” IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), (2012) 782—79224
[6] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. “Fine-Grained and Accurate Source Code Differencing”. 29th ACM/IEEE International Conference on Automated Software Engineering (2014), 313-324.

Bug Introducing Change Pool & Bug Fixing Commit

BIC2| Code
Differencing &£

LCS RAIE B4 Eams

Collect BIC and Bug Fixing Commits From
Open-Source Projects

Make csv file of BIC numerical Vector and Bug Fixing
Commit as pair

25

Identify Bug Fix with Similar Bug Introducing Change

[J
(1}
T

BIC2| Code
Differencing &£

BIC 3
S E

CRPS]
HAE

ad LCS FAIE B4 oaug

Calculate similarity between target bug’s
BIC and collected BIC using Longest
Common Subsequence (LCS) Algorithm

Extract Top 10 Bug Fixing Commits

26

Automated Program Repair with Reduced search space

BIC2| Code
Differencing &£

Provide selected bug fixing commit into APR Tool

27

Experimental Setup

28

Research Questions

RQ1. What is the performance of SPI compared to Baseline APR?
RQ2. Does pool size affect the performance?

RQ3. Does LCS similarity for patch effectively provide the necessary modifications?

29

Experimental Setup

Baseline APR: ConFix[7]

Java Bug Benchmark: Defects4J[8]

e Chart, Closure, Lang, Math, Time, Mockito

[7] Kim, Jindae, and Sunghun Kim. “Automatic patch generation with context-based change application.” Empirical Software Engineering 24.6 (2019): 4071-4106. 30
[8] Just, R, Jalali, D., Ernst, M.D. “Defects4J: A database of existing faults to enable controlled testing studies for Java programs.” Proceedings of the 2014 International Symposium on Software Testing and Analysis. 2014.

Experimental Setup

Fault Localization: Perfect Fault Localization

Pool: Apache open source project

e Beam, Cassandra, Hadoop, jUDDI, Kafka, Spark

[7] Kim, Jindae, and Sunghun Kim. “Automatic patch generation with context-based change application.” Empirical Software Engineering 24.6 (2019): 4071-4106. 3 1
[8] Just, R, Jalali, D., Ernst, M.D. “Defects4J: A database of existing faults to enable controlled testing studies for Java programs.” Proceedings of the 2014 International Symposium on Software Testing and Analysis. 2014.

ConFix: Automatic Patch Generation with Context-based
Change Application

Change Collection

Change Application

Code Changes

traverse(Node n) {

- child.traverse();

=

+ traverse(child);

- return nodes;

Change
Extraction

Change
Conversion

I

delete child.traverse(}
insert traverse{child)
delete return nodes

replace var0.method0()
with methodO{var0)
- var0, method0

delete return var0
-var0

\

Change Context
Identification

Context
PR

Change

Application

New Code

createPatch() {

apply{change);

P

)

nsert apply(change)

-

Change
Concretization

Methods
- sort, parse, apply,
Types

- Node, Tree, Script, ...
Variables

- change, node, list,

insert apply[change)

Location Context
Identification

©F
e Target Location
Context - getNewCode()
Pl R
~

insert method0(var0) I
- var0, method0 /

Context 0
* Change0
* Changel

Context 1
+ Change0

Change Pool

-—

Fig. 1: The Overview of Context-based Change Application Technique

[71Kim, Jindae, and Sunghun Kim. “Automatic patch generation with context-based change application.” Empirical Software Engineering 24.6 (2019): 4071-4106. 32

Experiment Result

Z S []
L > ISEL (arzi

33

RQ1. What is the performance of SPI compared to Baseline APR?

HE1. 43N o= Mgt ofk| Aot
ConFix With Answer ConFix0fl H& =& 7{210] M| S &AL ME 2|0
Project SPI Original ConFix | ConFix with Answers
Chart 3(4) 4 N/A
Closure 3(12) 6 20 - Original COﬂFlX[7]
Lang 2(4) S 5 - ConFix with Answers[8]
Math 4(11) 6 20 _ _
- SPlwith ConFix generated 12 correct patches
Time 0(1) 1 1
Mockito 0(0) N/A 4
Sum 12(32) 22 50

[71Kim, Jindae, and Sunghun Kim. “Automatic patch generation with context-based change application.” Empirical Software Engineering 24.6 (2019): 4071-4106. 34
[8] Sunghyun Choi, Junghyun Heo, Chaewoo Yu, and Jaechang Nam. “Analysis on Results of ConFix Execution Through Correct Patch Change Information” KCC 2022.

RQ1. What is the performance of SPI compared to Baseline APR?

0.15%

SPI bug fix commit candidates count — 10
ConFix bug fix commit candidates count 6,485

35

RQ1. What is the performance of SPI compared to Baseline APR?

4 additional correct patches

Closure 10
Closure 86
Lang 59
Math 59

36

RQ2. Does pool size affect the performance?

B2 Ot =8 77t AZE W SPI7H S35t TiX[2| 7i=

Project File Change: 3,262 File Change: 26,660

Chart 3(4) 3(4)

Closure 3) 312) Increasing the number of file modifications

Lang =) 24 considered by SPI leads to more bugs being fixed
Math 3(7) 4(11)

Time 0(1) 0(1)

Mockito 0(0) 0(0)

Sum 11(23) 12(32)

RQ3. Does LCS similarity for patch effectively provide the necessary
modifications?

3.LCS "o F==2| A0
S50z go/0js X0|8 B

Project | Patch-Generated No Overall

LCS Score Patch-Generated LCS

LCS Score Score
e LCSsimilarity effectively provided the
Chart 0.88 0.75 0.80 .
necessary fix operations

Closure 0.83 0.63 0.68
Lang 0.83 051 060 e Mann-Whitney U Test: Calculated as
Math 0.81 0.70 0.73 0.00018, indicating high statistical
Time — — p— significance at the 5% level
Mockito N/A 0.75 0.65
All 0.82* 0.65* 0.70

38

Conclusion & Future Works

Z, S L]
L ISEL razzi

39

Conclusion

Utilized Bug Introducing Change similarity to reduce Search Space

Confirmed reduction in search space and performance improvement

40

Future Works

Build a pool with larger GitHub open source projects with better quality

Try to integrate SPI with other APR

41

Q&A

42

Open Source Projects

 -—_-—_—_—_—_——_—_—_—_—_————— I | e ===
1 . . . 1 I
Before Bug ! Similarity |

=3 Inducing : Calculation — = o
1 i 1 ug 1
! Commit 4 BIC BIC Fixing I
: . Pool Commit : Selected
| InclBuucging : Pool | Bug Fi)fing
| Commit : | I """ :hl Comm|ts
o ______ I . o ______ 1

;Ea:_: BIC Identification BFC Selection v
Automated
Target BUg » Program Repair Tool

Bug Fixing Commit / Bug Introducing Change Pool

SE4E Apache LEAA ZZ2HE [fHIO +=&H

% Committ HS &= BIC &=

0
o
rz
10
4
ﬁ
0gr
2
o

316,272,316,437,442,750, 846,750,846, 750,846,782, 782,782, 782,847,442 ,168,102, 656,583, 583,678,612, 661,612, 661,612,597,613,612,597,613,612,597,613,612,613

44

