
유사 패치 기반 자동
프로그램 수정 기법

장세창 ¹ 최준혁 ¹ 김성빈 ¹ 김진대 ² 남재창 ¹
¹한동대학교 전산전자공학부
²서울과학기술대학교 컴퓨터공학과

1

지능형 소프트웨어 공학 연구실 (ISEL)

Contents

● Introduction

● Approach

● Experimental Setup

● Experiment Result

● Conclusion & Future Works

2

Introduction

3

Heuristic-based Automated Program Repair [1]

4[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University

Search Spaces

All ranges considered for generating candidate patches [2]

● Bug fixing operations

● Bug location

● Ingredients

● Test Suite

[2] Fan Long and Martin Rinard. 2016. “An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems.” In IEEE/ACM 38th International Conference on Software Engineering (2016). 702–713. 5

Operation

● Insert

● Move

● Delete

● Update

Search Spaces

6

Location

● Code block

● Line

● Variable

Ingredient

● Source code from other parts

of the same project

● Source code from external

projects

Search Spaces: Example

7

int getYear(int days) {
int year = 1980;
 while (days <= 365) {

if (isLeapYear(year)) {
if (days > 366) {

Location

Buggy Code

[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University

Search Spaces: Example

8

int getYear(int days) {
int year = 1980;
 while (days <= 365) {

if (isLeapYear(year)) {
if (days > 366) {

Location

Buggy Code

int getDay(int month) {
int year = 1980;
- while (month <= 12) {
+ while (month > 12) {

Ingredient

Operation

[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University

Search Spaces: Example

9

int getYear(int days) {
int year = 1980;
 while (days <= 365) {

if (isLeapYear(year)) {
if (days > 366) {

Location

Buggy Code

int getDay(int month) {
int year = 1980;
- while (month <= 12) {
+ while (month > 12) {

Ingredient

Operation

int getYear(int days) {
int year = 1980;
 - while (days <= 365) {
 + while (days > 365)

if (isLeapYear(year)) {
if (days > 366) {

Fixed Code

[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University

Search Spaces Problem

The performance of APR tools is directly related to the search space [2]

● Existing APR techniques still have vast patch search spaces

● Expanding the search space leads to resource wastage

● The density of correct patches decreases with more candidate patches

10
[2] Fan Long and Martin Rinard. 2016. “An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems.” In IEEE/ACM 38th International Conference on Software Engineering (2016). 702–713.

How can we effectively decrease search space?

11

Search Spaces

12

Operation

● Insert

● Move

● Delete

● Update

Location

● Code block

● Line

● Variable

Ingredient

● Source code from other parts

of the same project

● Source code from external

projects

Two bugs with similar bug-introducing changes (BIC)
will also have similar fixing commits (BFC)

13

Search Space: Example

14

int getYear(int days) {
int year = 1980;
 while (days <= 365) {

if (isLeapYear(year)) {
if (days > 366) {

[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University

int getYear(int days) {
int year = 1980;
 while (days == 365) {

if (isLeapYear(year)) {
if (days > 366) {

Buggy Code

Before Buggy Code

while (days > 365) {

while (days >= 365) {

while (days < 365) {

while (days == 365) {

while (days != 365) {

while (year <= 365) {

if (days != null) return 0;
while (days <365) {

if (days <= 0) return 0;
while (days < 365) {

while (days != null &&
days < 365) {

while (days > 0 &&
days < 365) {

Search Space Reduction

15

int getYear(int days) {
int year = 1980;
 while (days <= 365) {

if (isLeapYear(year)) {
if (days > 366) {

Ingredient

[1] The Hitchhiker's Guide to Search-Based Program Repair, Chris Timperley, Carnegie Mellon University

int getSecond(int month) {
int year = 1980;
- while (month <= 12) {
+ while (month > 12) {

int getMonth(int month) {
int year = 1980;
- while (month <= 12) {
+ while (month == 12) {

Ingredient

int getYear(int days) {
int year = 1980;
 while (days == 365) {

if (isLeapYear(year)) {
if (days > 366) {

Buggy Code

Before Buggy Code

int getMonth(int month) {
int year = 1980;
 while (month == 12) {

int getSecond(int month) {
int year = 1980;
 while (month == 12) {

Before Buggy Code

Before Buggy Code

Related work

16[4] Zhang, Xindong, et al. "Precfix: Large-scale patch recommendation by mining defect-patch pairs." Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in Practice. 2020.

Boosting Automated Program Repair with Bug-Inducing Commits (Ming et al.,

ICSE-NEIR ‘20) [3]

● Repair bugs by learning from how they were introduced rather than from how other bugs were

fixed

● Fixing ingredients needed to fix a bug can be inferred from the commit that introduced the bug

Related work

Precfix (Zhang et al., ICSE-SEIP ‘20) [4]

● Collecting defect-patch pairs from development histories

● Perform clustering and extracts generic reusable patching patterns

● Typical developer behaviors in committing bug fixes

17[4] Zhang, Xindong, et al. "Precfix: Large-scale patch recommendation by mining defect-patch pairs." Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in Practice. 2020.

Approach

18

19

Target Bug

Before Bug
Inducing
Commit

Bug
Inducing
Commit

BIC

Automated
Program Repair Tool

Open Source Projects

Selected
Bug Fixing
Commits

BIC
Pool

Bug
Fixing

Commit
Pool

BIC Identification BFC Selection

Similarity
Calculation

Overview

SPI: Similar Patch Identifier for Automated Program Repair

20

● Identify bug introducing change of provided

bug

● Extract bug fixes operations with similar bug
introducing change

● Use heuristic-based automated program

repair tool with reduced search space

GumTree: Code Differencing Tool (Falleri et al. ASE 2014)

21[6] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. “Fine-Grained and Accurate Source Code Differencing”. 29th ACM/IEEE International Conference on Automated Software Engineering (2014), 313–324.

GumTree: Closure-14 Example

22

<Snippet of Closure-14 Bug Introducing Change>

Before Bug Inducing Commit

After Bug Inducing Commit

Numerical Vector of Change Operation

23

● Convert the GumTree result into numerical vectors

● Each node type and edit operation has specific value to be distincted

<Snippet of Closure-14 Bug Introducing Change>

…

…

Identify Bug Introducing Change of Target Bug

24

● Use git blame command

● Define into change operation[5] to seek similar BIC

● Use GumTree[6] to extract edit operation in Abstract
Syntax Tree

● Convert to numerical vector

[5] Connor, Aidan, Aaron Harris, Nathan Cooper, and Denys Poshyvanyk. “Can we automatically fix bugs by learning edit operations?.” IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), (2012) 782-792
[6] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. “Fine-Grained and Accurate Source Code Differencing”. 29th ACM/IEEE International Conference on Automated Software Engineering (2014), 313–324.

Bug Introducing Change Pool & Bug Fixing Commit

25

● Collect BIC and Bug Fixing Commits From
Open-Source Projects

● Make csv file of BIC numerical Vector and Bug Fixing
Commit as pair

Identify Bug Fix with Similar Bug Introducing Change

26

● Calculate similarity between target bug’s

BIC and collected BIC using Longest

Common Subsequence (LCS) Algorithm

● Extract Top 10 Bug Fixing Commits

Automated Program Repair with Reduced search space

27

Provide selected bug fixing commit into APR Tool

Experimental Setup

28

Research Questions

29

RQ1. What is the performance of SPI compared to Baseline APR?

RQ2. Does pool size affect the performance?

RQ3. Does LCS similarity for patch effectively provide the necessary modifications?

Baseline APR: ConFix[7]

Java Bug Benchmark: Defects4J[8]

● Chart, Closure, Lang, Math, Time, Mockito

Experimental Setup

30[7] Kim, Jindae, and Sunghun Kim. “Automatic patch generation with context-based change application.” Empirical Software Engineering 24.6 (2019): 4071-4106.
[8] Just, R, Jalali, D., Ernst, M.D. “Defects4J: A database of existing faults to enable controlled testing studies for Java programs.” Proceedings of the 2014 International Symposium on Software Testing and Analysis. 2014.

Experimental Setup

31[7] Kim, Jindae, and Sunghun Kim. “Automatic patch generation with context-based change application.” Empirical Software Engineering 24.6 (2019): 4071-4106.
[8] Just, R, Jalali, D., Ernst, M.D. “Defects4J: A database of existing faults to enable controlled testing studies for Java programs.” Proceedings of the 2014 International Symposium on Software Testing and Analysis. 2014.

Fault Localization: Perfect Fault Localization

Pool: Apache open source project

● Beam, Cassandra, Hadoop, jUDDI, Kafka, Spark

ConFix: Automatic Patch Generation with Context-based
Change Application

32[7] Kim, Jindae, and Sunghun Kim. “Automatic patch generation with context-based change application.” Empirical Software Engineering 24.6 (2019): 4071-4106.

Experiment Result

33

RQ1. What is the performance of SPI compared to Baseline APR?

34

- Original ConFix[7]

- ConFix with Answers[8]

- SPI with ConFix generated 12 correct patches

[7] Kim, Jindae, and Sunghun Kim. “Automatic patch generation with context-based change application.” Empirical Software Engineering 24.6 (2019): 4071-4106.
[8] Sunghyun Choi, Junghyun Heo, Chaewoo Yu, and Jaechang Nam. “Analysis on Results of ConFix Execution Through Correct Patch Change Information” KCC 2022.

RQ1. What is the performance of SPI compared to Baseline APR?

35

0.15%
SPI bug fix commit candidates count

ConFix bug fix commit candidates count
10

6,485=

RQ1. What is the performance of SPI compared to Baseline APR?

36

4 additional correct patches

Closure 10

Closure 86

Lang 59

Math 59

RQ2. Does pool size affect the performance?

37

Increasing the number of file modifications
considered by SPI leads to more bugs being fixed

RQ3. Does LCS similarity for patch effectively provide the necessary
modifications?

38

● LCS similarity effectively provided the
necessary fix operations

● Mann-Whitney U Test: Calculated as
0.00018, indicating high statistical
significance at the 5% level

Conclusion & Future Works

39

Conclusion

40

Utilized Bug Introducing Change similarity to reduce Search Space

Confirmed reduction in search space and performance improvement

Future Works

41

Build a pool with larger GitHub open source projects with better quality

Try to integrate SPI with other APR

42

Q & A

Target Bug

Before Bug
Inducing
Commit

Bug
Inducing
Commit

BIC

Automated
Program Repair Tool

Open Source Projects

Selected
Bug Fixing
Commits

BIC
Pool

Bug
Fixing

Commit
Pool

BIC Identification BFC Selection

Similarity
Calculation

44

선택된 Apache 오픈소스 프로젝트 내 버그 수정
Commit

위 Commit과 대응되는 BIC 수정 연산의 수치형 벡터

Bug Fixing Commit / Bug Introducing Change Pool

…

…

